PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB`  lY$`@sdZddlmZddlZddlZddlZddlZddlZddgZddZ ddZ ej j Z ej jZejd ejejBZGd ddejZdS) z+Fraction, infinite-precision, real numbers.)DecimalNFractiongcdcCsddl}|jdtdt|tkoBt|knrz|pP|dkrjtj|| Stj||St||S)zCalculate the Greatest Common Divisor of a and b. Unless b==0, the result will have the same sign as b (so that when b is divided by it, the result comes out positive). rNz6fractions.gcd() is deprecated. Use math.gcd() instead.)warningswarnDeprecationWarningtypeintmathr_gcd)abrr(/opt/python35/lib/python3.5/fractions.pyrs   (cCs"x|r|||}}qW|S)Nr)r rrrrr s r aC \A\s* # optional whitespace at the start, then (?P[-+]?) # an optional sign, then (?=\d|\.\d) # lookahead for digit or .digit (?P\d*) # numerator (possibly empty) (?: # followed by (?:/(?P\d+))? # an optional denominator | # or (?:\.(?P\d*))? # an optional fractional part (?:E(?P[-+]?\d+))? # and optional exponent ) \s*\Z # and optional whitespace to finish cseeZdZdZdRZdddfddZed d Zed d Zd ddZ e ddZ e ddZ ddZ ddZddZddZeeej\ZZddZeeej\ZZddZeeej\ZZd d!Zeeej\ZZ d"d#Z!d$d%Z"d&d'Z#d(d)Z$d*d+Z%d,d-Z&d.d/Z'd0d1Z(d2d3Z)d4d5Z*d6d7Z+d8d9Z,dd:d;Z-d<d=Z.d>d?Z/d@dAZ0dBdCZ1dDdEZ2dFdGZ3dHdIZ4dJdKZ5dLdMZ6dNdOZ7dPdQZ8S)Sra]This class implements rational numbers. In the two-argument form of the constructor, Fraction(8, 6) will produce a rational number equivalent to 4/3. Both arguments must be Rational. The numerator defaults to 0 and the denominator defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. Fractions can also be constructed from: - numeric strings similar to those accepted by the float constructor (for example, '-2.3' or '1e10') - strings of the form '123/456' - float and Decimal instances - other Rational instances (including integers) _numerator _denominatorrNTc sUtt|j|}|dkr+t|tkrL||_d|_|St|tj rz|j |_|j |_|St|t rtj |}|j|_|j|_|St|trtj|}|j|_|j|_|St|trtj|}|dkr(td|t|jdp=d}|jd}|rgt|}nd}|jd}|rdt|} || t|}|| 9}|jd } | rt| } | d kr|d| 9}n|d| 9}|jd d kr(| }qtd nt|tkoNt|knrVnTt|tj rt|tj r|j |j |j |j }}n td|d krtd||r?t|tkot|knrtj||} |d kr+| } nt||} || }|| }||_||_|S)aConstructs a Rational. Takes a string like '3/2' or '1.5', another Rational instance, a numerator/denominator pair, or a float. Examples -------- >>> Fraction(10, -8) Fraction(-5, 4) >>> Fraction(Fraction(1, 7), 5) Fraction(1, 35) >>> Fraction(Fraction(1, 7), Fraction(2, 3)) Fraction(3, 14) >>> Fraction('314') Fraction(314, 1) >>> Fraction('-35/4') Fraction(-35, 4) >>> Fraction('3.1415') # conversion from numeric string Fraction(6283, 2000) >>> Fraction('-47e-2') # string may include a decimal exponent Fraction(-47, 100) >>> Fraction(1.47) # direct construction from float (exact conversion) Fraction(6620291452234629, 4503599627370496) >>> Fraction(2.25) Fraction(9, 4) >>> Fraction(Decimal('1.47')) Fraction(147, 100) Nz Invalid literal for Fraction: %rnum0denomdecimal exprsign-z2argument should be a string or a Rational instancez+both arguments should be Rational instanceszFraction(%s, 0))superr__new__r r rr isinstancenumbersRational numerator denominatorfloat from_floatr from_decimalstr_RATIONAL_FORMATmatch ValueErrorgrouplen TypeErrorZeroDivisionErrorr rr ) clsr!r" _normalizeselfvaluemrrZscalerg) __class__rrrTs               (   (      zFraction.__new__cCst|tjr||St|tsPtd|j|t|jftj|rxt d||jftj |rt d||jf||j S)zConverts a finite float to a rational number, exactly. Beware that Fraction.from_float(0.3) != Fraction(3, 10). z.%s.from_float() only takes floats, not %r (%s)zCannot convert %r to %s.) rrIntegralr#r,__name__r r isnanr)isinf OverflowErroras_integer_ratio)r.frrrr$s zFraction.from_floatcCs)ddlm}t|tjr7|t|}n4t||sktd|j|t|jf|j rt d||jf|j rt d||jf|j \}}}tdjtt|}|r| }|dkr||d|S||d| SdS)zAConverts a finite Decimal instance to a rational number, exactly.r)rz2%s.from_decimal() only takes Decimals, not %r (%s)zCannot convert %s to %s.rN)rrrrr5r r,r6r Z is_infiniter9Zis_nanr)Zas_tuplejoinmapr&)r.Zdecrrdigitsrrrrr%s&   zFraction.from_decimali@Bc Cs%|dkrtd|j|kr1t|Sd\}}}}|j|j}}xd||}|||} | |kr~P|||||| f\}}}}||||}}qYW|||} t|| ||| |} t||} t| |t| |kr| S| SdS)aWClosest Fraction to self with denominator at most max_denominator. >>> Fraction('3.141592653589793').limit_denominator(10) Fraction(22, 7) >>> Fraction('3.141592653589793').limit_denominator(100) Fraction(311, 99) >>> Fraction(4321, 8765).limit_denominator(10000) Fraction(4321, 8765) rz$max_denominator should be at least 1rN)rrrr)r)rrrabs) r0Zmax_denominatorZp0Zq0Zp1Zq1ndr Zq2kZbound1Zbound2rrrlimit_denominators&     & zFraction.limit_denominatorcCs|jS)N)r)r rrrr!*szFraction.numeratorcCs|jS)N)r)r rrrr".szFraction.denominatorcCsd|jj|j|jfS)z repr(self)z %s(%s, %s))r4r6rr)r0rrr__repr__2s zFraction.__repr__cCs4|jdkrt|jSd|j|jfSdS)z str(self)rz%s/%sN)rr&r)r0rrr__str__7s zFraction.__str__cstfdd}djd|_j|_fdd}djd|_j|_||fS)aGenerates forward and reverse operators given a purely-rational operator and a function from the operator module. Use this like: __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) In general, we want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there. In Fraction, that means that we define __add__ and __radd__ as: def __add__(self, other): # Both types have numerators/denominator attributes, # so do the operation directly if isinstance(other, (int, Fraction)): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) # float and complex don't have those operations, but we # know about those types, so special case them. elif isinstance(other, float): return float(self) + other elif isinstance(other, complex): return complex(self) + other # Let the other type take over. return NotImplemented def __radd__(self, other): # radd handles more types than add because there's # nothing left to fall back to. if isinstance(other, numbers.Rational): return Fraction(self.numerator * other.denominator + other.numerator * self.denominator, self.denominator * other.denominator) elif isinstance(other, Real): return float(other) + float(self) elif isinstance(other, Complex): return complex(other) + complex(self) return NotImplemented There are 5 different cases for a mixed-type addition on Fraction. I'll refer to all of the above code that doesn't refer to Fraction, float, or complex as "boilerplate". 'r' will be an instance of Fraction, which is a subtype of Rational (r : Fraction <: Rational), and b : B <: Complex. The first three involve 'r + b': 1. If B <: Fraction, int, float, or complex, we handle that specially, and all is well. 2. If Fraction falls back to the boilerplate code, and it were to return a value from __add__, we'd miss the possibility that B defines a more intelligent __radd__, so the boilerplate should return NotImplemented from __add__. In particular, we don't handle Rational here, even though we could get an exact answer, in case the other type wants to do something special. 3. If B <: Fraction, Python tries B.__radd__ before Fraction.__add__. This is ok, because it was implemented with knowledge of Fraction, so it can handle those instances before delegating to Real or Complex. The next two situations describe 'b + r'. We assume that b didn't know about Fraction in its implementation, and that it uses similar boilerplate code: 4. If B <: Rational, then __radd_ converts both to the builtin rational type (hey look, that's us) and proceeds. 5. Otherwise, __radd__ tries to find the nearest common base ABC, and fall back to its builtin type. Since this class doesn't subclass a concrete type, there's no implementation to fall back to, so we need to try as hard as possible to return an actual value, or the user will get a TypeError. csnt|ttfr"||St|trDt||St|trft||StSdS)N)rr rr#complexNotImplemented)r r)fallback_operatormonomorphic_operatorrrforwards z-Fraction._operator_fallbacks..forward__cs}t|tjr||St|tjrJt|t|St|tjrut|t|StSdS)N)rrr ZRealr#ComplexrGrH)rr )rIrJrrreverses z-Fraction._operator_fallbacks..reverseZ__r)r6__doc__)rJrIrKrNr)rIrJr_operator_fallbacks>sP    zFraction._operator_fallbackscCs6|j|j}}t|j||j|||S)za + b)r"rr!)r rdadbrrr_addsz Fraction._addcCs6|j|j}}t|j||j|||S)za - b)r"rr!)r rrQrRrrr_subsz Fraction._subcCs!t|j|j|j|jS)za * b)rr!r")r rrrr_mulsz Fraction._mulcCs!t|j|j|j|jS)za / b)rr!r")r rrrr_divsz Fraction._divcCstj||S)za // b)r floor)r rrrr __floordiv__szFraction.__floordiv__cCstj||S)za // b)r rW)rr rrr __rfloordiv__szFraction.__rfloordiv__cCs||}|||S)za % br)r rdivrrr__mod__s zFraction.__mod__cCs||}|||S)za % br)rr rZrrr__rmod__s zFraction.__rmod__cCst|tjr|jdkr|j}|dkrWt|j||j|ddS|jdkrt|j| |j| ddSt|j | |j | ddSqt|t|Snt||SdS)za ** b If b is not an integer, the result will be a float or complex since roots are generally irrational. If b is an integer, the result will be rational. rrr/FN) rrr r"r!rrrr#)r rZpowerrrr__pow__s      zFraction.__pow__cCsz|jdkr)|jdkr)||jSt|tjrRt|j|j|S|jdkrl||jS|t|S)za ** brr) rrrrr rr!r"r#)rr rrr__rpow__s  zFraction.__rpow__cCst|j|jddS)z++a: Coerces a subclass instance to Fractionr/F)rrr)r rrr__pos__szFraction.__pos__cCst|j |jddS)z-ar/F)rrr)r rrr__neg__szFraction.__neg__cCstt|j|jddS)zabs(a)r/F)rr@rr)r rrr__abs__ szFraction.__abs__cCs1|jdkr|j |j S|j|jSdS)ztrunc(a)rN)rr)r rrr __trunc__szFraction.__trunc__cCs|j|jS)zWill be math.floor(a) in 3.0.)r!r")r rrr __floor__szFraction.__floor__cCs|j |j S)zWill be math.ceil(a) in 3.0.)r!r")r rrr__ceil__szFraction.__ceil__cCs|dkrut|j|j\}}|d|jkr>|S|d|jkrY|dS|ddkrm|S|dSdt|}|dkrtt|||Stt|||SdS)zOWill be round(self, ndigits) in 3.0. Rounds half toward even. Nrrrr)divmodr!r"r@rround)r0ZndigitsrWZ remainderZshiftrrr __round__ s  zFraction.__round__cCslt|jtdt}|s(t}nt|j|t}|dkrQ|n| }|dkrhdS|S)z hash(self)rrr)powr_PyHASH_MODULUS _PyHASH_INFr@r)r0ZdinvZhash_resultrrr__hash__9s  zFraction.__hash__cCst|tkr.|j|ko-|jdkSt|tjrb|j|jkoa|j|jkSt|tj r|j dkr|j }t|t rt j|st j|rd|kS||j|kSntSdS)za == brrgN)r r rrrrr r!r"rMimagrealr#r r7r8r$rH)r rrrr__eq__Os!  zFraction.__eq__cCst|tjr3||j|j|j|jSt|trtj |s`tj |rm|d|S|||j |Snt SdS)acHelper for comparison operators, for internal use only. Implement comparison between a Rational instance `self`, and either another Rational instance or a float `other`. If `other` is not a Rational instance or a float, return NotImplemented. `op` should be one of the six standard comparison operators. gN) rrr rr"rr!r#r r7r8r$rH)r0otheroprrr_richcmpds  zFraction._richcmpcCs|j|tjS)za < b)rtoperatorlt)r rrrr__lt__zszFraction.__lt__cCs|j|tjS)za > b)rtrugt)r rrrr__gt__~szFraction.__gt__cCs|j|tjS)za <= b)rtrule)r rrrr__le__szFraction.__le__cCs|j|tjS)za >= b)rtruge)r rrrr__ge__szFraction.__ge__cCs |jdkS)za != 0r)r)r rrr__bool__szFraction.__bool__cCs|jt|ffS)N)r4r&)r0rrr __reduce__szFraction.__reduce__cCs,t|tkr|S|j|j|jS)N)r rr4rr)r0rrr__copy__szFraction.__copy__cCs,t|tkr|S|j|j|jS)N)r rr4rr)r0memorrr __deepcopy__szFraction.__deepcopy__)rr)9r6 __module__ __qualname__rO __slots__r classmethodr$r%rDpropertyr!r"rErFrPrSruadd__add____radd__rTsub__sub____rsub__rUmul__mul____rmul__rVtruediv __truediv__ __rtruediv__rXrYr[r\r]r^r_r`rarbrcrdrgrnrqrtrwryr{r}r~rrrrr)r4rr<sV u7   k                          )rOrrr rruresys__all__rr hash_infomodulusrkinfrlcompileVERBOSE IGNORECASEr'r rrrrrs