PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` package Paws::IoTAnalytics; use Moose; sub service { 'iotanalytics' } sub signing_name { 'iotanalytics' } sub version { '2017-11-27' } sub flattened_arrays { 0 } has max_attempts => (is => 'ro', isa => 'Int', default => 5); has retry => (is => 'ro', isa => 'HashRef', default => sub { { base => 'rand', type => 'exponential', growth_factor => 2 } }); has retriables => (is => 'ro', isa => 'ArrayRef', default => sub { [ ] }); with 'Paws::API::Caller', 'Paws::API::EndpointResolver', 'Paws::Net::V4Signature', 'Paws::Net::RestJsonCaller'; sub BatchPutMessage { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::BatchPutMessage', @_); return $self->caller->do_call($self, $call_object); } sub CancelPipelineReprocessing { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::CancelPipelineReprocessing', @_); return $self->caller->do_call($self, $call_object); } sub CreateChannel { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::CreateChannel', @_); return $self->caller->do_call($self, $call_object); } sub CreateDataset { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::CreateDataset', @_); return $self->caller->do_call($self, $call_object); } sub CreateDatasetContent { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::CreateDatasetContent', @_); return $self->caller->do_call($self, $call_object); } sub CreateDatastore { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::CreateDatastore', @_); return $self->caller->do_call($self, $call_object); } sub CreatePipeline { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::CreatePipeline', @_); return $self->caller->do_call($self, $call_object); } sub DeleteChannel { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DeleteChannel', @_); return $self->caller->do_call($self, $call_object); } sub DeleteDataset { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DeleteDataset', @_); return $self->caller->do_call($self, $call_object); } sub DeleteDatasetContent { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DeleteDatasetContent', @_); return $self->caller->do_call($self, $call_object); } sub DeleteDatastore { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DeleteDatastore', @_); return $self->caller->do_call($self, $call_object); } sub DeletePipeline { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DeletePipeline', @_); return $self->caller->do_call($self, $call_object); } sub DescribeChannel { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DescribeChannel', @_); return $self->caller->do_call($self, $call_object); } sub DescribeDataset { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DescribeDataset', @_); return $self->caller->do_call($self, $call_object); } sub DescribeDatastore { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DescribeDatastore', @_); return $self->caller->do_call($self, $call_object); } sub DescribeLoggingOptions { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DescribeLoggingOptions', @_); return $self->caller->do_call($self, $call_object); } sub DescribePipeline { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::DescribePipeline', @_); return $self->caller->do_call($self, $call_object); } sub GetDatasetContent { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::GetDatasetContent', @_); return $self->caller->do_call($self, $call_object); } sub ListChannels { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::ListChannels', @_); return $self->caller->do_call($self, $call_object); } sub ListDatasetContents { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::ListDatasetContents', @_); return $self->caller->do_call($self, $call_object); } sub ListDatasets { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::ListDatasets', @_); return $self->caller->do_call($self, $call_object); } sub ListDatastores { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::ListDatastores', @_); return $self->caller->do_call($self, $call_object); } sub ListPipelines { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::ListPipelines', @_); return $self->caller->do_call($self, $call_object); } sub ListTagsForResource { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::ListTagsForResource', @_); return $self->caller->do_call($self, $call_object); } sub PutLoggingOptions { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::PutLoggingOptions', @_); return $self->caller->do_call($self, $call_object); } sub RunPipelineActivity { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::RunPipelineActivity', @_); return $self->caller->do_call($self, $call_object); } sub SampleChannelData { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::SampleChannelData', @_); return $self->caller->do_call($self, $call_object); } sub StartPipelineReprocessing { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::StartPipelineReprocessing', @_); return $self->caller->do_call($self, $call_object); } sub TagResource { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::TagResource', @_); return $self->caller->do_call($self, $call_object); } sub UntagResource { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::UntagResource', @_); return $self->caller->do_call($self, $call_object); } sub UpdateChannel { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::UpdateChannel', @_); return $self->caller->do_call($self, $call_object); } sub UpdateDataset { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::UpdateDataset', @_); return $self->caller->do_call($self, $call_object); } sub UpdateDatastore { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::UpdateDatastore', @_); return $self->caller->do_call($self, $call_object); } sub UpdatePipeline { my $self = shift; my $call_object = $self->new_with_coercions('Paws::IoTAnalytics::UpdatePipeline', @_); return $self->caller->do_call($self, $call_object); } sub ListAllChannels { my $self = shift; my $callback = shift @_ if (ref($_[0]) eq 'CODE'); my $result = $self->ListChannels(@_); my $next_result = $result; if (not defined $callback) { while ($next_result->nextToken) { $next_result = $self->ListChannels(@_, nextToken => $next_result->nextToken); push @{ $result->channelSummaries }, @{ $next_result->channelSummaries }; } return $result; } else { while ($result->nextToken) { $callback->($_ => 'channelSummaries') foreach (@{ $result->channelSummaries }); $result = $self->ListChannels(@_, nextToken => $result->nextToken); } $callback->($_ => 'channelSummaries') foreach (@{ $result->channelSummaries }); } return undef } sub ListAllDatasetContents { my $self = shift; my $callback = shift @_ if (ref($_[0]) eq 'CODE'); my $result = $self->ListDatasetContents(@_); my $next_result = $result; if (not defined $callback) { while ($next_result->nextToken) { $next_result = $self->ListDatasetContents(@_, nextToken => $next_result->nextToken); push @{ $result->datasetContentSummaries }, @{ $next_result->datasetContentSummaries }; } return $result; } else { while ($result->nextToken) { $callback->($_ => 'datasetContentSummaries') foreach (@{ $result->datasetContentSummaries }); $result = $self->ListDatasetContents(@_, nextToken => $result->nextToken); } $callback->($_ => 'datasetContentSummaries') foreach (@{ $result->datasetContentSummaries }); } return undef } sub ListAllDatasets { my $self = shift; my $callback = shift @_ if (ref($_[0]) eq 'CODE'); my $result = $self->ListDatasets(@_); my $next_result = $result; if (not defined $callback) { while ($next_result->nextToken) { $next_result = $self->ListDatasets(@_, nextToken => $next_result->nextToken); push @{ $result->datasetSummaries }, @{ $next_result->datasetSummaries }; } return $result; } else { while ($result->nextToken) { $callback->($_ => 'datasetSummaries') foreach (@{ $result->datasetSummaries }); $result = $self->ListDatasets(@_, nextToken => $result->nextToken); } $callback->($_ => 'datasetSummaries') foreach (@{ $result->datasetSummaries }); } return undef } sub ListAllDatastores { my $self = shift; my $callback = shift @_ if (ref($_[0]) eq 'CODE'); my $result = $self->ListDatastores(@_); my $next_result = $result; if (not defined $callback) { while ($next_result->nextToken) { $next_result = $self->ListDatastores(@_, nextToken => $next_result->nextToken); push @{ $result->datastoreSummaries }, @{ $next_result->datastoreSummaries }; } return $result; } else { while ($result->nextToken) { $callback->($_ => 'datastoreSummaries') foreach (@{ $result->datastoreSummaries }); $result = $self->ListDatastores(@_, nextToken => $result->nextToken); } $callback->($_ => 'datastoreSummaries') foreach (@{ $result->datastoreSummaries }); } return undef } sub ListAllPipelines { my $self = shift; my $callback = shift @_ if (ref($_[0]) eq 'CODE'); my $result = $self->ListPipelines(@_); my $next_result = $result; if (not defined $callback) { while ($next_result->nextToken) { $next_result = $self->ListPipelines(@_, nextToken => $next_result->nextToken); push @{ $result->pipelineSummaries }, @{ $next_result->pipelineSummaries }; } return $result; } else { while ($result->nextToken) { $callback->($_ => 'pipelineSummaries') foreach (@{ $result->pipelineSummaries }); $result = $self->ListPipelines(@_, nextToken => $result->nextToken); } $callback->($_ => 'pipelineSummaries') foreach (@{ $result->pipelineSummaries }); } return undef } sub operations { qw/BatchPutMessage CancelPipelineReprocessing CreateChannel CreateDataset CreateDatasetContent CreateDatastore CreatePipeline DeleteChannel DeleteDataset DeleteDatasetContent DeleteDatastore DeletePipeline DescribeChannel DescribeDataset DescribeDatastore DescribeLoggingOptions DescribePipeline GetDatasetContent ListChannels ListDatasetContents ListDatasets ListDatastores ListPipelines ListTagsForResource PutLoggingOptions RunPipelineActivity SampleChannelData StartPipelineReprocessing TagResource UntagResource UpdateChannel UpdateDataset UpdateDatastore UpdatePipeline / } 1; ### main pod documentation begin ### =head1 NAME Paws::IoTAnalytics - Perl Interface to AWS AWS IoT Analytics =head1 SYNOPSIS use Paws; my $obj = Paws->service('IoTAnalytics'); my $res = $obj->Method( Arg1 => $val1, Arg2 => [ 'V1', 'V2' ], # if Arg3 is an object, the HashRef will be used as arguments to the constructor # of the arguments type Arg3 => { Att1 => 'Val1' }, # if Arg4 is an array of objects, the HashRefs will be passed as arguments to # the constructor of the arguments type Arg4 => [ { Att1 => 'Val1' }, { Att1 => 'Val2' } ], ); =head1 DESCRIPTION AWS IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. AWS IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. AWS IoT Analytics automates the steps required to analyze data from IoT devices. AWS IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. AWS IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices. For the AWS API documentation, see L =head1 METHODS =head2 BatchPutMessage =over =item ChannelName => Str =item Messages => ArrayRef[L] =back Each argument is described in detail in: L Returns: a L instance Sends messages to a channel. =head2 CancelPipelineReprocessing =over =item PipelineName => Str =item ReprocessingId => Str =back Each argument is described in detail in: L Returns: a L instance Cancels the reprocessing of data through the pipeline. =head2 CreateChannel =over =item ChannelName => Str =item [ChannelStorage => L] =item [RetentionPeriod => L] =item [Tags => ArrayRef[L]] =back Each argument is described in detail in: L Returns: a L instance Creates a channel. A channel collects data from an MQTT topic and archives the raw, unprocessed messages before publishing the data to a pipeline. =head2 CreateDataset =over =item Actions => ArrayRef[L] =item DatasetName => Str =item [ContentDeliveryRules => ArrayRef[L]] =item [LateDataRules => ArrayRef[L]] =item [RetentionPeriod => L] =item [Tags => ArrayRef[L]] =item [Triggers => ArrayRef[L]] =item [VersioningConfiguration => L] =back Each argument is described in detail in: L Returns: a L instance Creates a dataset. A dataset stores data retrieved from a data store by applying a C (a SQL query) or a C (executing a containerized application). This operation creates the skeleton of a dataset. The dataset can be populated manually by calling C or automatically according to a trigger you specify. =head2 CreateDatasetContent =over =item DatasetName => Str =item [VersionId => Str] =back Each argument is described in detail in: L Returns: a L instance Creates the content of a data set by applying a C (a SQL query) or a C (executing a containerized application). =head2 CreateDatastore =over =item DatastoreName => Str =item [DatastorePartitions => L] =item [DatastoreStorage => L] =item [FileFormatConfiguration => L] =item [RetentionPeriod => L] =item [Tags => ArrayRef[L]] =back Each argument is described in detail in: L Returns: a L instance Creates a data store, which is a repository for messages. Only data stores that are used to save pipeline data can be configured with C. =head2 CreatePipeline =over =item PipelineActivities => ArrayRef[L] =item PipelineName => Str =item [Tags => ArrayRef[L]] =back Each argument is described in detail in: L Returns: a L instance Creates a pipeline. A pipeline consumes messages from a channel and allows you to process the messages before storing them in a data store. You must specify both a C and a C activity and, optionally, as many as 23 additional activities in the C array. =head2 DeleteChannel =over =item ChannelName => Str =back Each argument is described in detail in: L Returns: nothing Deletes the specified channel. =head2 DeleteDataset =over =item DatasetName => Str =back Each argument is described in detail in: L Returns: nothing Deletes the specified dataset. You do not have to delete the content of the dataset before you perform this operation. =head2 DeleteDatasetContent =over =item DatasetName => Str =item [VersionId => Str] =back Each argument is described in detail in: L Returns: nothing Deletes the content of the specified dataset. =head2 DeleteDatastore =over =item DatastoreName => Str =back Each argument is described in detail in: L Returns: nothing Deletes the specified data store. =head2 DeletePipeline =over =item PipelineName => Str =back Each argument is described in detail in: L Returns: nothing Deletes the specified pipeline. =head2 DescribeChannel =over =item ChannelName => Str =item [IncludeStatistics => Bool] =back Each argument is described in detail in: L Returns: a L instance Retrieves information about a channel. =head2 DescribeDataset =over =item DatasetName => Str =back Each argument is described in detail in: L Returns: a L instance Retrieves information about a dataset. =head2 DescribeDatastore =over =item DatastoreName => Str =item [IncludeStatistics => Bool] =back Each argument is described in detail in: L Returns: a L instance Retrieves information about a data store. =head2 DescribeLoggingOptions Each argument is described in detail in: L Returns: a L instance Retrieves the current settings of the AWS IoT Analytics logging options. =head2 DescribePipeline =over =item PipelineName => Str =back Each argument is described in detail in: L Returns: a L instance Retrieves information about a pipeline. =head2 GetDatasetContent =over =item DatasetName => Str =item [VersionId => Str] =back Each argument is described in detail in: L Returns: a L instance Retrieves the contents of a data set as presigned URIs. =head2 ListChannels =over =item [MaxResults => Int] =item [NextToken => Str] =back Each argument is described in detail in: L Returns: a L instance Retrieves a list of channels. =head2 ListDatasetContents =over =item DatasetName => Str =item [MaxResults => Int] =item [NextToken => Str] =item [ScheduledBefore => Str] =item [ScheduledOnOrAfter => Str] =back Each argument is described in detail in: L Returns: a L instance Lists information about data set contents that have been created. =head2 ListDatasets =over =item [MaxResults => Int] =item [NextToken => Str] =back Each argument is described in detail in: L Returns: a L instance Retrieves information about data sets. =head2 ListDatastores =over =item [MaxResults => Int] =item [NextToken => Str] =back Each argument is described in detail in: L Returns: a L instance Retrieves a list of data stores. =head2 ListPipelines =over =item [MaxResults => Int] =item [NextToken => Str] =back Each argument is described in detail in: L Returns: a L instance Retrieves a list of pipelines. =head2 ListTagsForResource =over =item ResourceArn => Str =back Each argument is described in detail in: L Returns: a L instance Lists the tags (metadata) that you have assigned to the resource. =head2 PutLoggingOptions =over =item LoggingOptions => L =back Each argument is described in detail in: L Returns: nothing Sets or updates the AWS IoT Analytics logging options. If you update the value of any C field, it takes up to one minute for the change to take effect. Also, if you change the policy attached to the role you specified in the C field (for example, to correct an invalid policy), it takes up to five minutes for that change to take effect. =head2 RunPipelineActivity =over =item Payloads => ArrayRef[Str|Undef] =item PipelineActivity => L =back Each argument is described in detail in: L Returns: a L instance Simulates the results of running a pipeline activity on a message payload. =head2 SampleChannelData =over =item ChannelName => Str =item [EndTime => Str] =item [MaxMessages => Int] =item [StartTime => Str] =back Each argument is described in detail in: L Returns: a L instance Retrieves a sample of messages from the specified channel ingested during the specified timeframe. Up to 10 messages can be retrieved. =head2 StartPipelineReprocessing =over =item PipelineName => Str =item [ChannelMessages => L] =item [EndTime => Str] =item [StartTime => Str] =back Each argument is described in detail in: L Returns: a L instance Starts the reprocessing of raw message data through the pipeline. =head2 TagResource =over =item ResourceArn => Str =item Tags => ArrayRef[L] =back Each argument is described in detail in: L Returns: a L instance Adds to or modifies the tags of the given resource. Tags are metadata that can be used to manage a resource. =head2 UntagResource =over =item ResourceArn => Str =item TagKeys => ArrayRef[Str|Undef] =back Each argument is described in detail in: L Returns: a L instance Removes the given tags (metadata) from the resource. =head2 UpdateChannel =over =item ChannelName => Str =item [ChannelStorage => L] =item [RetentionPeriod => L] =back Each argument is described in detail in: L Returns: nothing Updates the settings of a channel. =head2 UpdateDataset =over =item Actions => ArrayRef[L] =item DatasetName => Str =item [ContentDeliveryRules => ArrayRef[L]] =item [LateDataRules => ArrayRef[L]] =item [RetentionPeriod => L] =item [Triggers => ArrayRef[L]] =item [VersioningConfiguration => L] =back Each argument is described in detail in: L Returns: nothing Updates the settings of a data set. =head2 UpdateDatastore =over =item DatastoreName => Str =item [DatastoreStorage => L] =item [FileFormatConfiguration => L] =item [RetentionPeriod => L] =back Each argument is described in detail in: L Returns: nothing Updates the settings of a data store. =head2 UpdatePipeline =over =item PipelineActivities => ArrayRef[L] =item PipelineName => Str =back Each argument is described in detail in: L Returns: nothing Updates the settings of a pipeline. You must specify both a C and a C activity and, optionally, as many as 23 additional activities in the C array. =head1 PAGINATORS Paginator methods are helpers that repetively call methods that return partial results =head2 ListAllChannels(sub { },[MaxResults => Int, NextToken => Str]) =head2 ListAllChannels([MaxResults => Int, NextToken => Str]) If passed a sub as first parameter, it will call the sub for each element found in : - channelSummaries, passing the object as the first parameter, and the string 'channelSummaries' as the second parameter If not, it will return a a L instance with all the Cs; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. =head2 ListAllDatasetContents(sub { },DatasetName => Str, [MaxResults => Int, NextToken => Str, ScheduledBefore => Str, ScheduledOnOrAfter => Str]) =head2 ListAllDatasetContents(DatasetName => Str, [MaxResults => Int, NextToken => Str, ScheduledBefore => Str, ScheduledOnOrAfter => Str]) If passed a sub as first parameter, it will call the sub for each element found in : - datasetContentSummaries, passing the object as the first parameter, and the string 'datasetContentSummaries' as the second parameter If not, it will return a a L instance with all the Cs; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. =head2 ListAllDatasets(sub { },[MaxResults => Int, NextToken => Str]) =head2 ListAllDatasets([MaxResults => Int, NextToken => Str]) If passed a sub as first parameter, it will call the sub for each element found in : - datasetSummaries, passing the object as the first parameter, and the string 'datasetSummaries' as the second parameter If not, it will return a a L instance with all the Cs; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. =head2 ListAllDatastores(sub { },[MaxResults => Int, NextToken => Str]) =head2 ListAllDatastores([MaxResults => Int, NextToken => Str]) If passed a sub as first parameter, it will call the sub for each element found in : - datastoreSummaries, passing the object as the first parameter, and the string 'datastoreSummaries' as the second parameter If not, it will return a a L instance with all the Cs; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. =head2 ListAllPipelines(sub { },[MaxResults => Int, NextToken => Str]) =head2 ListAllPipelines([MaxResults => Int, NextToken => Str]) If passed a sub as first parameter, it will call the sub for each element found in : - pipelineSummaries, passing the object as the first parameter, and the string 'pipelineSummaries' as the second parameter If not, it will return a a L instance with all the Cs; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. =head1 SEE ALSO This service class forms part of L =head1 BUGS and CONTRIBUTIONS The source code is located here: L Please report bugs to: L =cut