PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` package Paws::FraudDetector::GetEventPredictionResult; use Moose; has ModelScores => (is => 'ro', isa => 'ArrayRef[Paws::FraudDetector::ModelScores]', traits => ['NameInRequest'], request_name => 'modelScores' ); has RuleResults => (is => 'ro', isa => 'ArrayRef[Paws::FraudDetector::RuleResult]', traits => ['NameInRequest'], request_name => 'ruleResults' ); has _request_id => (is => 'ro', isa => 'Str'); ### main pod documentation begin ### =head1 NAME Paws::FraudDetector::GetEventPredictionResult =head1 ATTRIBUTES =head2 ModelScores => ArrayRef[L] The model scores. Amazon Fraud Detector generates model scores between 0 and 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are directly related to the false positive rate (FPR). For example, a score of 600 corresponds to an estimated 10% false positive rate whereas a score of 900 corresponds to an estimated 2% false positive rate. =head2 RuleResults => ArrayRef[L] The results. =head2 _request_id => Str =cut 1;