PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` package Paws::SageMaker::CreateAlgorithm; use Moose; has AlgorithmDescription => (is => 'ro', isa => 'Str'); has AlgorithmName => (is => 'ro', isa => 'Str', required => 1); has CertifyForMarketplace => (is => 'ro', isa => 'Bool'); has InferenceSpecification => (is => 'ro', isa => 'Paws::SageMaker::InferenceSpecification'); has Tags => (is => 'ro', isa => 'ArrayRef[Paws::SageMaker::Tag]'); has TrainingSpecification => (is => 'ro', isa => 'Paws::SageMaker::TrainingSpecification', required => 1); has ValidationSpecification => (is => 'ro', isa => 'Paws::SageMaker::AlgorithmValidationSpecification'); use MooseX::ClassAttribute; class_has _api_call => (isa => 'Str', is => 'ro', default => 'CreateAlgorithm'); class_has _returns => (isa => 'Str', is => 'ro', default => 'Paws::SageMaker::CreateAlgorithmOutput'); class_has _result_key => (isa => 'Str', is => 'ro'); 1; ### main pod documentation begin ### =head1 NAME Paws::SageMaker::CreateAlgorithm - Arguments for method CreateAlgorithm on L =head1 DESCRIPTION This class represents the parameters used for calling the method CreateAlgorithm on the L service. Use the attributes of this class as arguments to method CreateAlgorithm. You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateAlgorithm. =head1 SYNOPSIS my $api.sagemaker = Paws->service('SageMaker'); my $CreateAlgorithmOutput = $api . sagemaker->CreateAlgorithm( AlgorithmName => 'MyEntityName', TrainingSpecification => { SupportedTrainingInstanceTypes => [ 'ml.m4.xlarge', ... # values: ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.p4d.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge ], TrainingChannels => [ { Name => 'MyChannelName', # min: 1, max: 64 SupportedContentTypes => [ 'MyContentType', ... # max: 256 ], SupportedInputModes => [ 'Pipe', ... # values: Pipe, File ], # min: 1 Description => 'MyEntityDescription', # max: 1024; OPTIONAL IsRequired => 1, # OPTIONAL SupportedCompressionTypes => [ 'None', ... # values: None, Gzip ], # OPTIONAL }, ... ], # min: 1, max: 8 TrainingImage => 'MyContainerImage', # max: 255 MetricDefinitions => [ { Name => 'MyMetricName', # min: 1, max: 255 Regex => 'MyMetricRegex', # min: 1, max: 500 }, ... ], # max: 40; OPTIONAL SupportedHyperParameters => [ { Name => 'MyParameterName', # max: 256 Type => 'Integer', # values: Integer, Continuous, Categorical, FreeText DefaultValue => 'MyHyperParameterValue', # max: 2500; OPTIONAL Description => 'MyEntityDescription', # max: 1024; OPTIONAL IsRequired => 1, # OPTIONAL IsTunable => 1, # OPTIONAL Range => { CategoricalParameterRangeSpecification => { Values => [ 'MyParameterValue', ... # max: 256 ], # min: 1, max: 20 }, # OPTIONAL ContinuousParameterRangeSpecification => { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 }, # OPTIONAL IntegerParameterRangeSpecification => { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 }, # OPTIONAL }, # OPTIONAL }, ... ], # max: 100; OPTIONAL SupportedTuningJobObjectiveMetrics => [ { MetricName => 'MyMetricName', # min: 1, max: 255 Type => 'Maximize', # values: Maximize, Minimize }, ... ], # OPTIONAL SupportsDistributedTraining => 1, # OPTIONAL TrainingImageDigest => 'MyImageDigest', # max: 72; OPTIONAL }, AlgorithmDescription => 'MyEntityDescription', # OPTIONAL CertifyForMarketplace => 1, # OPTIONAL InferenceSpecification => { Containers => [ { Image => 'MyContainerImage', # max: 255 ContainerHostname => 'MyContainerHostname', # max: 63; OPTIONAL Environment => { 'MyEnvironmentKey' => 'MyEnvironmentValue', # key: max: 1024, value: max: 1024 }, # max: 16; OPTIONAL ImageDigest => 'MyImageDigest', # max: 72; OPTIONAL ModelDataUrl => 'MyUrl', # max: 1024; OPTIONAL ProductId => 'MyProductId', # max: 256; OPTIONAL }, ... ], # min: 1, max: 5 SupportedContentTypes => [ 'MyContentType', ... # max: 256 ], SupportedResponseMIMETypes => [ 'MyResponseMIMEType', ... # max: 1024 ], SupportedRealtimeInferenceInstanceTypes => [ 'ml.t2.medium', ... # values: ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge ], # OPTIONAL SupportedTransformInstanceTypes => [ 'ml.m4.xlarge', ... # values: ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge ], # min: 1; OPTIONAL }, # OPTIONAL Tags => [ { Key => 'MyTagKey', # min: 1, max: 128 Value => 'MyTagValue', # max: 256 }, ... ], # OPTIONAL ValidationSpecification => { ValidationProfiles => [ { ProfileName => 'MyEntityName', # min: 1, max: 63 TrainingJobDefinition => { InputDataConfig => [ { ChannelName => 'MyChannelName', # min: 1, max: 64 DataSource => { FileSystemDataSource => { DirectoryPath => 'MyDirectoryPath', # max: 4096 FileSystemAccessMode => 'rw', # values: rw, ro FileSystemId => 'MyFileSystemId', # min: 11 FileSystemType => 'EFS', # values: EFS, FSxLustre }, # OPTIONAL S3DataSource => { S3DataType => 'ManifestFile' , # values: ManifestFile, S3Prefix, AugmentedManifestFile S3Uri => 'MyS3Uri', # max: 1024 AttributeNames => [ 'MyAttributeName', ... # min: 1, max: 256 ], # max: 16; OPTIONAL S3DataDistributionType => 'FullyReplicated' , # values: FullyReplicated, ShardedByS3Key; OPTIONAL }, # OPTIONAL }, CompressionType => 'None', # values: None, Gzip ContentType => 'MyContentType', # max: 256 InputMode => 'Pipe', # values: Pipe, File RecordWrapperType => 'None', # values: None, RecordIO; OPTIONAL ShuffleConfig => { Seed => 1, }, # OPTIONAL }, ... ], # min: 1, max: 20 OutputDataConfig => { S3OutputPath => 'MyS3Uri', # max: 1024 KmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, ResourceConfig => { InstanceCount => 1, # min: 1 InstanceType => 'ml.m4.xlarge' , # values: ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.p4d.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge VolumeSizeInGB => 1, # min: 1 VolumeKmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, StoppingCondition => { MaxRuntimeInSeconds => 1, # min: 1; OPTIONAL MaxWaitTimeInSeconds => 1, # min: 1; OPTIONAL }, TrainingInputMode => 'Pipe', # values: Pipe, File HyperParameters => { 'MyHyperParameterKey' => 'MyHyperParameterValue' , # key: max: 256, value: max: 2500; OPTIONAL }, # max: 100; OPTIONAL }, TransformJobDefinition => { TransformInput => { DataSource => { S3DataSource => { S3DataType => 'ManifestFile' , # values: ManifestFile, S3Prefix, AugmentedManifestFile S3Uri => 'MyS3Uri', # max: 1024 }, }, CompressionType => 'None', # values: None, Gzip ContentType => 'MyContentType', # max: 256 SplitType => 'None', # values: None, Line, RecordIO, TFRecord; OPTIONAL }, TransformOutput => { S3OutputPath => 'MyS3Uri', # max: 1024 Accept => 'MyAccept', # max: 256; OPTIONAL AssembleWith => 'None', # values: None, Line; OPTIONAL KmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, TransformResources => { InstanceCount => 1, # min: 1 InstanceType => 'ml.m4.xlarge' , # values: ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge VolumeKmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, BatchStrategy => 'MultiRecord', # values: MultiRecord, SingleRecord; OPTIONAL Environment => { 'MyTransformEnvironmentKey' => 'MyTransformEnvironmentValue' , # key: max: 1024, value: max: 10240 }, # max: 16; OPTIONAL MaxConcurrentTransforms => 1, # OPTIONAL MaxPayloadInMB => 1, # OPTIONAL }, # OPTIONAL }, ... ], # min: 1, max: 1 ValidationRole => 'MyRoleArn', # min: 20, max: 2048 }, # OPTIONAL ); # Results: my $AlgorithmArn = $CreateAlgorithmOutput->AlgorithmArn; # Returns a L object. Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see L =head1 ATTRIBUTES =head2 AlgorithmDescription => Str A description of the algorithm. =head2 B AlgorithmName => Str The name of the algorithm. =head2 CertifyForMarketplace => Bool Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace. =head2 InferenceSpecification => L Specifies details about inference jobs that the algorithm runs, including the following: =over =item * The Amazon ECR paths of containers that contain the inference code and model artifacts. =item * The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference. =item * The input and output content formats that the algorithm supports for inference. =back =head2 Tags => ArrayRef[L] An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html). =head2 B TrainingSpecification => L Specifies details about training jobs run by this algorithm, including the following: =over =item * The Amazon ECR path of the container and the version digest of the algorithm. =item * The hyperparameters that the algorithm supports. =item * The instance types that the algorithm supports for training. =item * Whether the algorithm supports distributed training. =item * The metrics that the algorithm emits to Amazon CloudWatch. =item * Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs. =item * The input channels that the algorithm supports for training data. For example, an algorithm might support C, C, and C channels. =back =head2 ValidationSpecification => L Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code. =head1 SEE ALSO This class forms part of L, documenting arguments for method CreateAlgorithm in L =head1 BUGS and CONTRIBUTIONS The source code is located here: L Please report bugs to: L =cut