PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` package Paws::SageMaker::CreateHyperParameterTuningJob; use Moose; has HyperParameterTuningJobConfig => (is => 'ro', isa => 'Paws::SageMaker::HyperParameterTuningJobConfig', required => 1); has HyperParameterTuningJobName => (is => 'ro', isa => 'Str', required => 1); has Tags => (is => 'ro', isa => 'ArrayRef[Paws::SageMaker::Tag]'); has TrainingJobDefinition => (is => 'ro', isa => 'Paws::SageMaker::HyperParameterTrainingJobDefinition'); has TrainingJobDefinitions => (is => 'ro', isa => 'ArrayRef[Paws::SageMaker::HyperParameterTrainingJobDefinition]'); has WarmStartConfig => (is => 'ro', isa => 'Paws::SageMaker::HyperParameterTuningJobWarmStartConfig'); use MooseX::ClassAttribute; class_has _api_call => (isa => 'Str', is => 'ro', default => 'CreateHyperParameterTuningJob'); class_has _returns => (isa => 'Str', is => 'ro', default => 'Paws::SageMaker::CreateHyperParameterTuningJobResponse'); class_has _result_key => (isa => 'Str', is => 'ro'); 1; ### main pod documentation begin ### =head1 NAME Paws::SageMaker::CreateHyperParameterTuningJob - Arguments for method CreateHyperParameterTuningJob on L =head1 DESCRIPTION This class represents the parameters used for calling the method CreateHyperParameterTuningJob on the L service. Use the attributes of this class as arguments to method CreateHyperParameterTuningJob. You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateHyperParameterTuningJob. =head1 SYNOPSIS my $api.sagemaker = Paws->service('SageMaker'); my $CreateHyperParameterTuningJobResponse = $api . sagemaker->CreateHyperParameterTuningJob( HyperParameterTuningJobConfig => { ResourceLimits => { MaxNumberOfTrainingJobs => 1, # min: 1 MaxParallelTrainingJobs => 1, # min: 1 }, Strategy => 'Bayesian', # values: Bayesian, Random HyperParameterTuningJobObjective => { MetricName => 'MyMetricName', # min: 1, max: 255 Type => 'Maximize', # values: Maximize, Minimize }, # OPTIONAL ParameterRanges => { CategoricalParameterRanges => [ { Name => 'MyParameterKey', # max: 256 Values => [ 'MyParameterValue', ... # max: 256 ], # min: 1, max: 20 }, ... ], # max: 20; OPTIONAL ContinuousParameterRanges => [ { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 Name => 'MyParameterKey', # max: 256 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # max: 20; OPTIONAL IntegerParameterRanges => [ { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 Name => 'MyParameterKey', # max: 256 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # max: 20; OPTIONAL }, # OPTIONAL TrainingJobEarlyStoppingType => 'Off', # values: Off, Auto; OPTIONAL TuningJobCompletionCriteria => { TargetObjectiveMetricValue => 1.0, }, # OPTIONAL }, HyperParameterTuningJobName => 'MyHyperParameterTuningJobName', Tags => [ { Key => 'MyTagKey', # min: 1, max: 128 Value => 'MyTagValue', # max: 256 }, ... ], # OPTIONAL TrainingJobDefinition => { AlgorithmSpecification => { TrainingInputMode => 'Pipe', # values: Pipe, File AlgorithmName => 'MyArnOrName', # min: 1, max: 170; OPTIONAL MetricDefinitions => [ { Name => 'MyMetricName', # min: 1, max: 255 Regex => 'MyMetricRegex', # min: 1, max: 500 }, ... ], # max: 40; OPTIONAL TrainingImage => 'MyAlgorithmImage', # max: 255; OPTIONAL }, OutputDataConfig => { S3OutputPath => 'MyS3Uri', # max: 1024 KmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, ResourceConfig => { InstanceCount => 1, # min: 1 InstanceType => 'ml.m4.xlarge' , # values: ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.p4d.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge VolumeSizeInGB => 1, # min: 1 VolumeKmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, RoleArn => 'MyRoleArn', # min: 20, max: 2048 StoppingCondition => { MaxRuntimeInSeconds => 1, # min: 1; OPTIONAL MaxWaitTimeInSeconds => 1, # min: 1; OPTIONAL }, CheckpointConfig => { S3Uri => 'MyS3Uri', # max: 1024 LocalPath => 'MyDirectoryPath', # max: 4096; OPTIONAL }, # OPTIONAL DefinitionName => 'MyHyperParameterTrainingJobDefinitionName' , # min: 1, max: 64; OPTIONAL EnableInterContainerTrafficEncryption => 1, # OPTIONAL EnableManagedSpotTraining => 1, # OPTIONAL EnableNetworkIsolation => 1, # OPTIONAL HyperParameterRanges => { CategoricalParameterRanges => [ { Name => 'MyParameterKey', # max: 256 Values => [ 'MyParameterValue', ... # max: 256 ], # min: 1, max: 20 }, ... ], # max: 20; OPTIONAL ContinuousParameterRanges => [ { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 Name => 'MyParameterKey', # max: 256 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # max: 20; OPTIONAL IntegerParameterRanges => [ { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 Name => 'MyParameterKey', # max: 256 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # max: 20; OPTIONAL }, # OPTIONAL InputDataConfig => [ { ChannelName => 'MyChannelName', # min: 1, max: 64 DataSource => { FileSystemDataSource => { DirectoryPath => 'MyDirectoryPath', # max: 4096; OPTIONAL FileSystemAccessMode => 'rw', # values: rw, ro FileSystemId => 'MyFileSystemId', # min: 11 FileSystemType => 'EFS', # values: EFS, FSxLustre }, # OPTIONAL S3DataSource => { S3DataType => 'ManifestFile' , # values: ManifestFile, S3Prefix, AugmentedManifestFile S3Uri => 'MyS3Uri', # max: 1024 AttributeNames => [ 'MyAttributeName', ... # min: 1, max: 256 ], # max: 16; OPTIONAL S3DataDistributionType => 'FullyReplicated' , # values: FullyReplicated, ShardedByS3Key; OPTIONAL }, # OPTIONAL }, CompressionType => 'None', # values: None, Gzip; OPTIONAL ContentType => 'MyContentType', # max: 256; OPTIONAL InputMode => 'Pipe', # values: Pipe, File RecordWrapperType => 'None', # values: None, RecordIO; OPTIONAL ShuffleConfig => { Seed => 1, }, # OPTIONAL }, ... ], # min: 1, max: 20; OPTIONAL RetryStrategy => { MaximumRetryAttempts => 1, # min: 1, max: 30 }, # OPTIONAL StaticHyperParameters => { 'MyHyperParameterKey' => 'MyHyperParameterValue', # key: max: 256, value: max: 2500 }, # max: 100; OPTIONAL TuningObjective => { MetricName => 'MyMetricName', # min: 1, max: 255 Type => 'Maximize', # values: Maximize, Minimize }, # OPTIONAL VpcConfig => { SecurityGroupIds => [ 'MySecurityGroupId', ... # max: 32 ], # min: 1, max: 5 Subnets => [ 'MySubnetId', ... # max: 32 ], # min: 1, max: 16 }, # OPTIONAL }, # OPTIONAL TrainingJobDefinitions => [ { AlgorithmSpecification => { TrainingInputMode => 'Pipe', # values: Pipe, File AlgorithmName => 'MyArnOrName', # min: 1, max: 170; OPTIONAL MetricDefinitions => [ { Name => 'MyMetricName', # min: 1, max: 255 Regex => 'MyMetricRegex', # min: 1, max: 500 }, ... ], # max: 40; OPTIONAL TrainingImage => 'MyAlgorithmImage', # max: 255; OPTIONAL }, OutputDataConfig => { S3OutputPath => 'MyS3Uri', # max: 1024 KmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, ResourceConfig => { InstanceCount => 1, # min: 1 InstanceType => 'ml.m4.xlarge' , # values: ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.p4d.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge VolumeSizeInGB => 1, # min: 1 VolumeKmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, RoleArn => 'MyRoleArn', # min: 20, max: 2048 StoppingCondition => { MaxRuntimeInSeconds => 1, # min: 1; OPTIONAL MaxWaitTimeInSeconds => 1, # min: 1; OPTIONAL }, CheckpointConfig => { S3Uri => 'MyS3Uri', # max: 1024 LocalPath => 'MyDirectoryPath', # max: 4096; OPTIONAL }, # OPTIONAL DefinitionName => 'MyHyperParameterTrainingJobDefinitionName' , # min: 1, max: 64; OPTIONAL EnableInterContainerTrafficEncryption => 1, # OPTIONAL EnableManagedSpotTraining => 1, # OPTIONAL EnableNetworkIsolation => 1, # OPTIONAL HyperParameterRanges => { CategoricalParameterRanges => [ { Name => 'MyParameterKey', # max: 256 Values => [ 'MyParameterValue', ... # max: 256 ], # min: 1, max: 20 }, ... ], # max: 20; OPTIONAL ContinuousParameterRanges => [ { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 Name => 'MyParameterKey', # max: 256 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # max: 20; OPTIONAL IntegerParameterRanges => [ { MaxValue => 'MyParameterValue', # max: 256 MinValue => 'MyParameterValue', # max: 256 Name => 'MyParameterKey', # max: 256 ScalingType => 'Auto' , # values: Auto, Linear, Logarithmic, ReverseLogarithmic; OPTIONAL }, ... ], # max: 20; OPTIONAL }, # OPTIONAL InputDataConfig => [ { ChannelName => 'MyChannelName', # min: 1, max: 64 DataSource => { FileSystemDataSource => { DirectoryPath => 'MyDirectoryPath', # max: 4096; OPTIONAL FileSystemAccessMode => 'rw', # values: rw, ro FileSystemId => 'MyFileSystemId', # min: 11 FileSystemType => 'EFS', # values: EFS, FSxLustre }, # OPTIONAL S3DataSource => { S3DataType => 'ManifestFile' , # values: ManifestFile, S3Prefix, AugmentedManifestFile S3Uri => 'MyS3Uri', # max: 1024 AttributeNames => [ 'MyAttributeName', ... # min: 1, max: 256 ], # max: 16; OPTIONAL S3DataDistributionType => 'FullyReplicated' , # values: FullyReplicated, ShardedByS3Key; OPTIONAL }, # OPTIONAL }, CompressionType => 'None', # values: None, Gzip; OPTIONAL ContentType => 'MyContentType', # max: 256; OPTIONAL InputMode => 'Pipe', # values: Pipe, File RecordWrapperType => 'None', # values: None, RecordIO; OPTIONAL ShuffleConfig => { Seed => 1, }, # OPTIONAL }, ... ], # min: 1, max: 20; OPTIONAL RetryStrategy => { MaximumRetryAttempts => 1, # min: 1, max: 30 }, # OPTIONAL StaticHyperParameters => { 'MyHyperParameterKey' => 'MyHyperParameterValue', # key: max: 256, value: max: 2500 }, # max: 100; OPTIONAL TuningObjective => { MetricName => 'MyMetricName', # min: 1, max: 255 Type => 'Maximize', # values: Maximize, Minimize }, # OPTIONAL VpcConfig => { SecurityGroupIds => [ 'MySecurityGroupId', ... # max: 32 ], # min: 1, max: 5 Subnets => [ 'MySubnetId', ... # max: 32 ], # min: 1, max: 16 }, # OPTIONAL }, ... ], # OPTIONAL WarmStartConfig => { ParentHyperParameterTuningJobs => [ { HyperParameterTuningJobName => 'MyHyperParameterTuningJobName', # min: 1, max: 32 }, ... ], # min: 1, max: 5 WarmStartType => 'IdenticalDataAndAlgorithm' , # values: IdenticalDataAndAlgorithm, TransferLearning }, # OPTIONAL ); # Results: my $HyperParameterTuningJobArn = $CreateHyperParameterTuningJobResponse->HyperParameterTuningJobArn; # Returns a L object. Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see L =head1 ATTRIBUTES =head2 B HyperParameterTuningJobConfig => L The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html). =head2 B HyperParameterTuningJobName => Str The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive. =head2 Tags => ArrayRef[L] An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html). Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches. =head2 TrainingJobDefinition => L The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition. =head2 TrainingJobDefinitions => ArrayRef[L] A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job. =head2 WarmStartConfig => L Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify C as the C value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job. All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job. =head1 SEE ALSO This class forms part of L, documenting arguments for method CreateHyperParameterTuningJob in L =head1 BUGS and CONTRIBUTIONS The source code is located here: L Please report bugs to: L =cut