PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` package Paws::SageMaker::CreateTransformJob; use Moose; has BatchStrategy => (is => 'ro', isa => 'Str'); has DataProcessing => (is => 'ro', isa => 'Paws::SageMaker::DataProcessing'); has Environment => (is => 'ro', isa => 'Paws::SageMaker::TransformEnvironmentMap'); has ExperimentConfig => (is => 'ro', isa => 'Paws::SageMaker::ExperimentConfig'); has MaxConcurrentTransforms => (is => 'ro', isa => 'Int'); has MaxPayloadInMB => (is => 'ro', isa => 'Int'); has ModelClientConfig => (is => 'ro', isa => 'Paws::SageMaker::ModelClientConfig'); has ModelName => (is => 'ro', isa => 'Str', required => 1); has Tags => (is => 'ro', isa => 'ArrayRef[Paws::SageMaker::Tag]'); has TransformInput => (is => 'ro', isa => 'Paws::SageMaker::TransformInput', required => 1); has TransformJobName => (is => 'ro', isa => 'Str', required => 1); has TransformOutput => (is => 'ro', isa => 'Paws::SageMaker::TransformOutput', required => 1); has TransformResources => (is => 'ro', isa => 'Paws::SageMaker::TransformResources', required => 1); use MooseX::ClassAttribute; class_has _api_call => (isa => 'Str', is => 'ro', default => 'CreateTransformJob'); class_has _returns => (isa => 'Str', is => 'ro', default => 'Paws::SageMaker::CreateTransformJobResponse'); class_has _result_key => (isa => 'Str', is => 'ro'); 1; ### main pod documentation begin ### =head1 NAME Paws::SageMaker::CreateTransformJob - Arguments for method CreateTransformJob on L =head1 DESCRIPTION This class represents the parameters used for calling the method CreateTransformJob on the L service. Use the attributes of this class as arguments to method CreateTransformJob. You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateTransformJob. =head1 SYNOPSIS my $api.sagemaker = Paws->service('SageMaker'); my $CreateTransformJobResponse = $api . sagemaker->CreateTransformJob( ModelName => 'MyModelName', TransformInput => { DataSource => { S3DataSource => { S3DataType => 'ManifestFile' , # values: ManifestFile, S3Prefix, AugmentedManifestFile S3Uri => 'MyS3Uri', # max: 1024 }, }, CompressionType => 'None', # values: None, Gzip; OPTIONAL ContentType => 'MyContentType', # max: 256; OPTIONAL SplitType => 'None', # values: None, Line, RecordIO, TFRecord; OPTIONAL }, TransformJobName => 'MyTransformJobName', TransformOutput => { S3OutputPath => 'MyS3Uri', # max: 1024 Accept => 'MyAccept', # max: 256; OPTIONAL AssembleWith => 'None', # values: None, Line; OPTIONAL KmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, TransformResources => { InstanceCount => 1, # min: 1 InstanceType => 'ml.m4.xlarge' , # values: ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge VolumeKmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL }, BatchStrategy => 'MultiRecord', # OPTIONAL DataProcessing => { InputFilter => 'MyJsonPath', # max: 63; OPTIONAL JoinSource => 'Input', # values: Input, None; OPTIONAL OutputFilter => 'MyJsonPath', # max: 63; OPTIONAL }, # OPTIONAL Environment => { 'MyTransformEnvironmentKey' => 'MyTransformEnvironmentValue', # key: max: 1024, value: max: 10240 }, # OPTIONAL ExperimentConfig => { ExperimentName => 'MyExperimentEntityName', # min: 1, max: 120; OPTIONAL TrialComponentDisplayName => 'MyExperimentEntityName', # min: 1, max: 120; OPTIONAL TrialName => 'MyExperimentEntityName', # min: 1, max: 120; OPTIONAL }, # OPTIONAL MaxConcurrentTransforms => 1, # OPTIONAL MaxPayloadInMB => 1, # OPTIONAL ModelClientConfig => { InvocationsMaxRetries => 1, # max: 3; OPTIONAL InvocationsTimeoutInSeconds => 1, # min: 1, max: 3600; OPTIONAL }, # OPTIONAL Tags => [ { Key => 'MyTagKey', # min: 1, max: 128 Value => 'MyTagValue', # max: 256 }, ... ], # OPTIONAL ); # Results: my $TransformJobArn = $CreateTransformJobResponse->TransformJobArn; # Returns a L object. Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see L =head1 ATTRIBUTES =head2 BatchStrategy => Str Specifies the number of records to include in a mini-batch for an HTTP inference request. A I I< is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.> To enable the batch strategy, you must set the C property to C, C, or C. To use only one record when making an HTTP invocation request to a container, set C to C and C to C. To fit as many records in a mini-batch as can fit within the C limit, set C to C and C to C. Valid values are: C<"MultiRecord">, C<"SingleRecord"> =head2 DataProcessing => L The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html). =head2 Environment => L The environment variables to set in the Docker container. We support up to 16 key and values entries in the map. =head2 ExperimentConfig => L =head2 MaxConcurrentTransforms => Int The maximum number of parallel requests that can be sent to each instance in a transform job. If C is set to C<0> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is C<1>. For more information on execution-parameters, see How Containers Serve Requests (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests). For built-in algorithms, you don't need to set a value for C. =head2 MaxPayloadInMB => Int The maximum allowed size of the payload, in MB. A I is the data portion of a record (without metadata). The value in C must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is C<6> MB. For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to C<0>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding. =head2 ModelClientConfig => L Configures the timeout and maximum number of retries for processing a transform job invocation. =head2 B ModelName => Str The name of the model that you want to use for the transform job. C must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account. =head2 Tags => ArrayRef[L] (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) in the I. =head2 B TransformInput => L Describes the input source and the way the transform job consumes it. =head2 B TransformJobName => Str The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. =head2 B TransformOutput => L Describes the results of the transform job. =head2 B TransformResources => L Describes the resources, including ML instance types and ML instance count, to use for the transform job. =head1 SEE ALSO This class forms part of L, documenting arguments for method CreateTransformJob in L =head1 BUGS and CONTRIBUTIONS The source code is located here: L Please report bugs to: L =cut